

The History

- Ecology, especially in the Eastern Region, recognized some TMDLs would be complicated by low-flow and intermittent conditions (circa 2009)
 - Water quality standards do not consider natural variability resulting from flow extremes
 - Natural conditions likely different than numeric criteria
- TMDLs put on hold because natural flow conditions preclude the ability of the stream to meet the designated numeric criteria
 - Remaining temperature, DO, pH TMDLs likely have issues due to flow conditions (even on some perennial streams)
 - Result: many 303(d) listings unaddressed

The Challenges

- Modeling often shows restored natural condition would not meet numeric water quality criteria
- Results in permit limits to achieve the unnatural water quality criteria
 - Technology not always available to achieve
 - A Car a Grand Commission of the costs
 - Passadon do communidas cutzens
 - Towns that discharge to these variable streams often lower socioeconomic conditions
- Natural Conditions in TMDLs
 - Post Oregon decision need a robust way to document natural conditions determinations

Proposal

- "Performance-based approach to site-specific criteria development"
- Prescribed methodology incorporated into the water quality standards and then used to develop water quality criteria based on defensible determination of natural conditions
- Consistent with EPA guidance published in February 2015 Document and 2000 Federal Register

non-ESA waters: new criteria would not require ESA consultation and EPA review can be expedited.

ESA waters: Performance-based process strengthens basis for sight-specific criteria rule change but may require consultation —> longer EPA review process.

Proposal - continued

- Use methodology to develop criteria that more accurately match a given parameter's natural condition or regime under restored natural conditions
- Designated use is not changed (not a UAA)
- Standardizes process to credibly determine the natural condition or regime for specific parameters
- Documents new criteria (numeric criteria and seasons if applicable) within the WQ Standards waterbody-specific rules (Table 602).
- Requires multiple state rule making processes
 - To interpretable procedure into W05 (one time)
 - To designate new criteria for individual water bodies (for each waterbody -or-group of waterbodies)

Performance-based approach Flowchart elements Questions to ensure using right tool (perhaps a UAA Decide track (ESA vs. non-ESA) Define boundary where will new criteria apply Define duration ontena apply finodeling considerations Define frequency checklist" Define magnitude (numeric criteria) Parameter (1986) Incorporation into VO standards

Modeling Conditions Checklist

- Purpose: To prescribe all elements critical to credibly determine the natural condition or regime for a given parameter when developing:
- Instructions: All elements of a prescribed natural condition analysis must be considered when determining the natural condition or regime of a parameter.
 - If a required element is deemed not critical in a particular analysis, an explanation why it was not included must be provided.
 - Other situation specific elements not listed will be considered if deemed important.
 - Additionally, how the element was applied in modeling scenarios must be documented.

Modeling Conditions Checklist

- System potential shade
- Channel morphology changes
- Flow reductions or increases
- Hydromodifications (dams, weirs)
- o Pojnikkouras elitusiji
- Natural nutrient concentrations; legacy contamination
- o investive species
- Biological measure or indices

What proposal doesn't address

- Effluent-dominated streams
- Flow augmented streams (irrigation return)
- Pivaninada water bodiesi
- Will still have facilities that will need to remove discharge because there is not enough capacity or dilution to accept effluent

Schedule

- We are considering Hangman Creek DO/pH TMDL modeling to test the performance-based approach and modeling checklist
- Asking Environmental Assessment Program to use checklist on all future TMDL modeling
- Simultaneous rulemaking to incorporate performance-based approach and first set of seasonal site-specific criteria (Hangman Creek)
- First set of site specific criteria will not be completed until late 2018 at the earliest

Potential Future Alternative

- Threshold critical low flow below which numeric criteria do not apply or an alternative criteria applies
 - Develop a scientifically supported critical low flow threshold
 - e.g. when 7Q2 is below X cfs, the numeric criteria do not apply or other numeric criteria apply
 - Implement through a provision in the standards to apply across all streams for dissolved oxygen, pH, and temperature criteria

Threshold Critical Low-Flow

Pros	Cons
•Potentially a single statement that could be added to the WQS to address extreme low flows	 May be difficult to determine a single threshold flow
•Single rule change; Would not require UAAs or site-specific rulemaking	•Could be perceived as weakening the standards
•If written correctly would only affect low flow streams with no impact to perennials	
•Takes into consideration fish's natural timing of stream or refugia use	
•Could allow dischargers to stay in the river during lower flows reducing seasonal storage needs (and costs)	
•Addresses those DO impacts that are due to low- flow/ higher natural temperatures vs. nutrient problems	